PoreAna 0.2
  • API
  • Sample
  • Density
  • Diffusion (Bin)
  • Diffusion (MC)
  • Further Properties
  • Site
    • Page
        • mean
          • mean()
    • mean
      • mean()
    Source

    mean¶

    poreana.diffusion.mean(diff_data, dens_data, ax_area=[0.2, 0.8], is_print=True)¶

    This function uses the diffusion coefficient slope obtained from function poreana.diffusion.bins() and the density slope of function poreana.density.bins() to calculate a weighted diffusion coefficient inside the pore

    \[\langle D_\text{axial}\rangle =\frac{\int\rho(r)D_\text{axial}(r)dA(r)}{\int\rho(r)dA(r)}.\]

    In a discrete form, following formula is evaluated

    \[\langle D_\text{axial}\rangle=\frac{\sum_{i=1}^n\rho(r_i)D_\text{axial}(r_i)A(r_i)}{\sum_{i=1}^n\rho(r_i)A(r_i)}\]

    with the partial area

    \[A(r_i)=\pi(r_i^2-r_{i-1}^2)\]

    of radial bin \(i\). It is assumed that the discretization of the density is finer than the diffusion. Therefore, the diffusion values for each density bin are interpolated between the nearest available diffusion values.

    Parameters:
    diff_datadictionary

    Diffusion data dictionary from function poreana.diffusion.bins()

    dens_datadictionary

    Density data dictionary from function poreana.density.bins()

    ax_arealist, optional

    Bin area percentage to calculate the axial diffusion coefficient

    is_printbool, optional

    True to print mean diffusion

    Returns:
    diff_weightfloat

    Density weighted mean axial diffusion in 10^-9 m^2s^-1

    Back to top

    © Copyright 2021, Hamzeh Kraus.
    Created using Sphinx 7.4.6.