Calculate the double decoupling free enthalpy difference according to
\[\Delta G^\text{DD}=\Delta G_{\mathrm{u\rightarrow b}}^\mathrm{M}=-\Delta G_\mathrm{hyd}^\mathrm{M}-\Delta G_{\mathrm{b\rightarrow tor}}^{\mathrm{M\rightarrow M'}}-\Delta G_{\mathrm{tor}}^{\mathrm{M'}}.\]
Hereby \(\Delta G_\mathrm{hyd}^\mathrm{M}\) is the hydration enthalpy
energy from the unbound state, \(\Delta G_{\mathrm{b\rightarrow tor}}^{\mathrm{M\rightarrow M'}}\)
the free enthalpy difference from turning on orientational and translational
restrants (tor) and deactivating the intramolecular interactions of the
guest molecule with its surroundings. The free enthalpy differnece due to
restraints \(\Delta G_{\mathrm{tor}}^{\mathrm{M'}}\) is then
subtracted. This contribution can be calculated analytaically as proposed
by Boresch and Karplus
\[\Delta G_{\mathrm{tor}}^{\mathrm{M'}}=-RT\ln\left[\frac{8\pi V^0(K_rK_{\theta_A}K_{\theta_B}K_{\phi_A}K_{\phi_B}K_{\phi_C})^\frac{1}{2}}{r_{aA,0}^2\sin\theta_{A,0}\sin\theta_{B,0}(2\pi RT)^3}\right].\]
Parameters: |
- temp : float
System temperature in K
- dG_hydr : float
Hydration free enthalpy \(\Delta G_\mathrm{hyd}^\mathrm{M}\) in kJ/mol
- dG_host : float
Free enthalpy difference from turning on restraints and deactivating
intramolecular interactions \(\Delta G_{\mathrm{b\rightarrow tor}}^{\mathrm{M\rightarrow M'}}\)
in kJ/mol
- restraints : dictionary
Restraints applied during simulation
- forces : dictionary, optional
Restraint forces applied during simulation
|
Returns: |
- dG : dictionary
Dictionary containing the binding free enthalpy dG_tot and the
analytical free enthalpy difference due to restraints dG_rest
|