Binding AffinityΒΆ
import pandas as pd
import moldyn as md
hga.affinity.hist("COLVAR", [1, 2], ["Centers of Mass", "Oxygenes"])
hga.affinity.sample("COLVAR", "count.obj", [1, 0.5], [2, 0.46], is_force=True)
hga.affinity.number("count.obj", 298.15, 31.3707e-27)
kJ/mol | kcal/mol | |
---|---|---|
dG | -14.028719 | -3.351099 |
dG_O1 | -14.022662 | -3.349652 |
dG_O2 | 0.882953 | 0.210915 |
tables = [hga.affinity.time("data/cyclodextrin/count.obj", cutoff, 298.15, 31.3707e-27) for cutoff in [100*x for x in range(11)]]
table = pd.concat(tables)
display(table)
Cutoff (ps) | dG (kJ/mol) | dG (kcal/mol) | k_on (dm^3/mol/s) | k_off (1/s) | |
---|---|---|---|---|---|
0 | 0 | -14.035023 | -3.352605 | 1.073377e+10 | 3.729713e+07 |
0 | 100 | -8.353826 | -1.995514 | 3.106633e+08 | 1.068000e+07 |
0 | 200 | -8.353826 | -1.995514 | 3.106633e+08 | 1.068000e+07 |
0 | 300 | -8.353826 | -1.995514 | 3.106633e+08 | 1.068000e+07 |
0 | 400 | -8.353826 | -1.995514 | 3.106633e+08 | 1.068000e+07 |
0 | 500 | -8.353826 | -1.995514 | 3.106633e+08 | 1.068000e+07 |
0 | 600 | -8.353826 | -1.995514 | 3.106633e+08 | 1.068000e+07 |
0 | 700 | -8.353826 | -1.995514 | 3.106633e+08 | 1.068000e+07 |
0 | 800 | -8.353826 | -1.995514 | 3.106633e+08 | 1.068000e+07 |
0 | 900 | -8.353826 | -1.995514 | 3.106633e+08 | 1.068000e+07 |
0 | 1000 | -8.353826 | -1.995514 | 3.106633e+08 | 1.068000e+07 |