Binding AffinityΒΆ

import pandas as pd
import moldyn as md
hga.affinity.hist("COLVAR", [1, 2], ["Centers of Mass", "Oxygenes"])
_images/affinity.svg
hga.affinity.sample("COLVAR", "count.obj", [1, 0.5], [2, 0.46], is_force=True)
hga.affinity.number("count.obj", 298.15, 31.3707e-27)
kJ/mol kcal/mol
dG -14.028719 -3.351099
dG_O1 -14.022662 -3.349652
dG_O2 0.882953 0.210915
tables = [hga.affinity.time("data/cyclodextrin/count.obj", cutoff, 298.15, 31.3707e-27) for cutoff in [100*x for x in range(11)]]

table = pd.concat(tables)

display(table)
Cutoff (ps) dG (kJ/mol) dG (kcal/mol) k_on (dm^3/mol/s) k_off (1/s)
0 0 -14.035023 -3.352605 1.073377e+10 3.729713e+07
0 100 -8.353826 -1.995514 3.106633e+08 1.068000e+07
0 200 -8.353826 -1.995514 3.106633e+08 1.068000e+07
0 300 -8.353826 -1.995514 3.106633e+08 1.068000e+07
0 400 -8.353826 -1.995514 3.106633e+08 1.068000e+07
0 500 -8.353826 -1.995514 3.106633e+08 1.068000e+07
0 600 -8.353826 -1.995514 3.106633e+08 1.068000e+07
0 700 -8.353826 -1.995514 3.106633e+08 1.068000e+07
0 800 -8.353826 -1.995514 3.106633e+08 1.068000e+07
0 900 -8.353826 -1.995514 3.106633e+08 1.068000e+07
0 1000 -8.353826 -1.995514 3.106633e+08 1.068000e+07